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minha formação. Agradeço também à famı́lia de Let́ıcia que desde 2012 me acolheu

muito bem, principalmente avós, tias e tios e meu sogro.

Meus amigos de sempre, Eric, Filipe, Luan e Matheus, há anos me aturando e
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A maior parte das biópsias realizadas em mulheres com lesões identificadas em

exames de imagem para mama revela benignidade. Esse procedimento é invasivo,

e demanda tempo e recursos. Dessa maneira, há interesse na diminuição dessas

cirurgias desnecessárias. Para alcançar esse objetivo, o uso de diagnóstico assis-

tido por computador como uma segunda leitura tem sido cada vez mais recorrente.

Pensando nisso, apresenta-se, neste trabalho, uma implementação das redes neurais

convolutivas U-Net e Segnet para segmentação de lesões em imagens de ultrassom de

mama. Definir qual arquitetura é mais apropriada para essa função pode ajudar na

extração de caracteŕısticas e posterior classificação de lesões, diminuindo o número

de biópsias realizadas. Foi usado um banco de imagens, obtido em parceria com o

Instituto Nacional de Câncer, com 2054 imagens. Foram comparadas a segmentação

automática realizada pelas redes com uma segmentação manual feita por um espe-

cialista. Dentre as duas arquiteturas propostas, a U-Net obteve melhores resultados

nessa tarefa, obtendo um coeficiente dice de 86.3%, e teve tempo de treino 68.3%

menor.
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Most biopsies performed on women with lesions identified on breast imaging

tests show benignity. This procedure is invasive, and demands time and resources,

thus, there is interest in reducing these unnecessary surgeries. To achieve this goal,

the use of computer-aided diagnostics as a second reader has been increasing lately.

Considering this scenario, the present work describes an implementation of two

convolutional neural networks, U-Net and Segnet, for lesion segmentation in breast

ultrasound images. Defining which architecture is most appropriate for this function

can help the feature extraction and subsequent classification of lesions, reducing the

number of biopsies performed. We used a dataset obtained in partnership with the

National Cancer Institute, with 2054 images and compared the automatic segmen-

tation performed by the networks with a manual segmentation made by a specialist.

Among the two proposed architectures, U-Net obtained better results in this task,

obtaining a dice coefficient of 86.3%, and took 68.3% less training time.
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Chapter 1

Introduction

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million

deaths in 2018 according to the World Health Organization. In this scenario, breast

cancer appears as one of the most common types with 2.09-millions new cases and

over 0.6 million deaths [1]. In Brazil, the National Cancer Institute (INCa) estimates

62.280 new cases of breast cancer for each year of the 2020-22 triennium [2].

Detection of cancer at late stages may not provide time to effective treatment,

thus early diagnosis is crucial to improve the survival rate of patients. The best

strategy to early detection of cancer is screening. Currently, X-rays mammography

is the most used modality for breast cancer[3].

The mammogram analysis depends on the training and experience of the radi-

ologist, thus there is an intrinsic subjective factor in the interpretation of lesions.

Size and morphological variation of the lesions may result in imprecise evaluation.

Also, a high proportion of dense breast tissue hinders mammography cancer detec-

tion. For such reasons, about 10% to 30% of breast lesions are not identified on

mammograms [4].

Because of inconclusive findings in mammography, breast ultrasound (BUS) has

emerged as an important ally in diagnostics. The use of adjunct ultrasound is

thought to be a safe and inexpensive approach to improve the sensitivity and speci-

ficity of breast cancer screening [5, 6]. BUS image analysis is done by observing

morphological and texture characteristics.

In cases of suspicious abnormality or highly suspicious of malignancy, radiologists

issue a clinical recommendation, which is basically to perform a biopsy. However,

the likelihood of malignancy may also vary due to inter- and intraobservers image

interpretation. According to the American National Breast Cancer Foundation, 80%

of women who undergo breast biopsy do not have breast cancer [7]. The cost due to

over-diagnosis and false positives in 40-59 year-old women is estimated as $4 billion

dollars per year in the United States alone [8].

In order to mitigate the subjective factor of image interpretation and reduce the
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number of unnecessary biopsies, computer-aided diagnosis (CADx) systems are used

as a “second reader”. Double-reading of screenings decreases the uncertainty of the

specialist, increasing up to 15% the sensitivity in the detection of breast cancer [9].

Based on that, the development of the CADx systems is crucial and this can be

accomplished by refinement of its steps.

Commonly, CADx systems for BUS images involve four stages: (i) image pre-

processing, (ii) lesion segmentation, (iii) feature extraction and (iv) classification.

The segmentation is often considered the most critical step in the system, as the

subsequent operations depend on an adequate separation of the lesions from the

background and other structures. However, BUS segmentation is a difficult task,

owing to the variance in lesion shapes, speckle artifact, low contrast and blurry

boundaries [10]. Considering the malignant tumours present more irregular bound-

aries, segmentation accuracy is crucial.

Automatic BUS segmentation has been extensively studied in the last two

decades; either fully or semi-automatic ones. It avoids the human manual task of

segmenting, saving significant time. Figure 1.1 shows the distribution of techniques

employed in previous works [11].

Figure 1.1: Distribution of automatic BUS image segmentation approaches; data
comes from Google Scholar.

Convolutional Neural Networks (CNN) has been widely used for classification

tasks in researches over the years, including in the biomedical field. Unlike tradi-

tional techniques, deep learning methods are able to learn the main features pre-

sented in an image by itself, disregarding handmade features extractors designed

by a specialist in the field[12]. Using CNN to perform the segmentation procedure

could help with feature extraction and posterior classification of lesions in a CADx

system.

Determining which CNN accomplishes better results for segmentation tasks in

BUS images should help the evolution of this field of study. For that matter, in the

present work, we trained two well-known Convolutional Neural Networks, the U-

Net and the SegNet, to segment images of our dataset of breast ultrasound images.
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U-Net was developed at the University of Freiburg, specifically designed to work

with segmentation in the biomedical field. It was awarded with two prizes in cell

segmentation and was supposed to be applied easily to many more tasks. One year

later, SegNet was presented as a novel architecture for general-purpose segmentation,

achieving high scores while using less memory. Since then, different studies using

those networks in ultrasound images were published[13–20].

The main objective of this work was to verify which CNN achieved the best

segmentation results. In order to accomplish this task, we trained both architectures

for segmentation of tumours on our dataset and compared the tests results with a

manually delineated contour of breast lesions.
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Chapter 2

Literature Review

2.1 Breast Cancer

Cancer is the name given for a group of diseases associated to abnormal cells growth,

invading adjacent tissues and potentially spreading to distant organs in the body.

It can affect almost any part of the body and has many anatomic and molecular

subtypes that each requires specific management strategies [21].

It is the second leading cause of death globally and is estimated to account for 9.6

million deaths in 2018. Figure 2.1 (adapted from [1]) shows the estimated numbers

for new cases of cancer in 2018 with lung and breast at the top. Lung, prostate,

colorectal, stomach and liver cancer are the most common types of cancer in men,

while breast, colorectal, lung, cervix and thyroid cancer are the most common among

women [1]. The perspective in Brazil is similar, with breast cancer presenting an

estimated number of 66.280 new cases for each year of the 2020-2022 triennium [2].

Cancer is a genetic disease that occurs when the information in cellular DNA

becomes corrupted, leading to abnormal patterns of gene expression. The main

mechanism is through the accumulation of mutations, although there is increasing

recognition of the role of non-mutational changes in the process [22].

These gene mutations may be inherited, develop over time as we get older and

genes wear out, or develop if we are exposed to agents that damages our genes, such

as cigarette smoke, alcohol or ultraviolet radiation from the sun [23]. Once the cells

start growing with damaged genes, they are more likely to pick up further mutations

and less likely to be able to repair themselves [24].

Cancer cells are different from normal cells because they divide faster and out

of control because they avoid the immune system, ignoring signals that inhibit pro-

liferation or induces apoptosis. They do not develop into mature cells with specific

functions, and can spread to other parts of the body through the blood or lym-

phatic system , as illustrated in Figure 2.2 (adapted from [23]). Similarly to normal
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Figure 2.1: Estimated numbers of cancer new cases in 2018. Data from GLOBOCAN
2018.

cells, they need blood supply to bring them oxygen and nutrients. But as a tumour

grows faster, it needs even more blood supply. So cancer cells release exceptionally

large amount of vascular endothelial growth factors to form new blood vessels. This

accelerated angiogenesis supports the high rate of the tumour growth [23].

Figure 2.2: Angiogenesis and spreading cancer cells.

Most breast cancers begin in the lactiferous ducts (ductal cancers) but some start

in the mammary glands (lobular cancers). The normal breast structure can be seen

in Figure 2.3 [25]. Less commonly, breast cancer can begin in the stromal tissues,

which include the fatty and fibrous connective tissues of the breast. Over time,

cancer cells can invade nearby healthy breast tissue and make their way into the

underarm lymph nodes, gaining access into other parts of the body [26]. Localized

cancer leads to a 5-year survival rate of 97.5%, whereas cancer that has spread to

distant organs has a 5-year survival rate of only 20.4% [27].

Although many types of breast cancer can cause a lump in the breast, not all do.

Many breast cancers are found on screening mammograms which can detect cancers

at an earlier stage, often before they can be felt, and before symptoms develop.

It is also important to understand that most breast lumps are benign and not

5



Figure 2.3: Normal breast tissue.

cancer (malignant). Non-cancerous breast tumours are abnormal growths, but they

do not spread outside of the breast and they are not life threatening. But some

benign breast lumps can increase a woman’s risk of getting breast cancer. Detection

of tumours in the earlier stages is the best way to improve the survival rate of

patients. Early breast cancer usually has a very good prognosis, and the treatment

may involve the combination of surgery, radiation therapy, chemotherapy, hormone

therapy and/or targeted therapy.[26].

Currently, clinical exam and screening are the top-tier strategies to detect breast

cancer before symptoms develop. The former is the easiest to perform, while the lat-

ter can identify non-palpable masses. Among different screening methods, mammog-

raphy is the most common exam, with magnetic resonance imaging and ultrasound

being used as supplemental tools [5].

Mammogram is basically an X-ray image of the breast. Differences in breast

tissue generally show as different shades of grey, while microcalcifications are white.

Unfortunately, the sensitivity of mammograms decreases as the breast tissue den-

sity rises. Considering that denser breasts suggest higher risks of cancer[28], this

limitation of the exam is aggravated.

For that matter, other screening methods (such as the mentioned above) are

used in combination to improve detection of cancer. As this work deals with breast

ultrasound, the next section will focus on it.
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2.2 Ultrasound

Ultrasound is the name given to sound waves whose frequency is greater than 20

kHz. These waves consist of a mechanical disturbance of molecules, creating a

oscilating movement of particles in an elastic medium about an equilibrium position.

The disturbance propagates through the medium at a speed which depends on the

compressibility and density of the medium.

Most ultrasound applications involve transmitting short bursts, or pulses, of

waves into the body and receiving echoes from tissue interfaces and scattering from

inside the organs. The time between transmitting a pulse and receiving an echo

is used to determine the depth of the interface. As the energy propagates, it is

attenuated, scattered, and reflected, producing echoes from various interfaces[29].

Attenuation is the reduction of ultrasound amplitude during its passage through

medium. This loss occurs by absorption, scatter, beam divergence, reflection and re-

fraction. Absorption is the conversion of the wave energy into heat, due to relaxation

mechanisms of particles movement.

Ultrasound applied to medicine is commonly composed of longitudinal waves,

which means the direction of the propagation is the same as the disturbance. As the

particles oscillate they cause a sequence of increase and decrease in local pressure.

This phenomenon can be seen in Figure 2.4[29].

Figure 2.4: Variation of local pressure caused by longitudinal waves.

Propagation is composed of cycles of compression and rarefaction. As the pres-

sure decreases, this energy is converted back from potential into kinetic energy. In

cases of high frequency there is insufficient time for energy to change states com-

pletely, causing loss of energy in the form of heat [30]. Biological tissues are usually

composed by complex structures, with distinct attenuation coefficients throughout

the medium.

D’Astous and Foster[31] studied the attenuation of ultrasound on breast tissue.

The results, displayed in Figure 2.5, showed that the attenuation coefficient of ho-

mogeneous regions of infiltrating duct carcinoma was higher than that of fat but
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lower than that of fibrous and parenchymal tissues. They also ratify the frequency

dependence of the attenuation coefficient.

Figure 2.5: Summary of the frequency dependent attenuation coefficient measured
for samples of breast fat, parenchyma and structural tissues, and infiltrating duct
carcinoma.

Scattering is another phenomenon that occurs in ultrasound, acting in two man-

ners: attenuating the main beam and producing artifacts in the experiment. It

happens when the beam is incident on a rough surface or small-sized particles. This

interaction is proportional to the frequency, and causes the beam to scatter in dif-

ferent directions.

Reflection and refraction are other phenomena inherent to the nature of wave

propagation. When ultrasound is incident on a smooth interface between two differ-

ent tissues, some part is reflected and some part is transmitted. The ratio of reflected

intensity and transmitted intensity depends upon the characteristics of both tissues

- specifically the acoustic impedance.

If the beam reaches the interface at a non-normal angle of incidence the trans-

mitted beam will deflect obeying the Snell’s Law, which is called refraction. It states

that the relationship between the incident angle (θ1) and refraction (θ2) is propor-

tional to the ratio of velocities v or the refractive indexes n. A scheme of reflection

8



and refraction of ultrasound waves is available in Figure 2.6[32].

sin(θ1)

sin(θ2)
=
v2
v1

=
n1

n2

(2.1)

Figure 2.6: Reflection and refraction phenomena in biological tissue.

In ultrasonography, the pulse traverses through the medium and suffers these

effects until an interface is encountered. The strength of the echo returning to the

transducer will be dependent upon the acoustical impedance mismatch between the

two tissues and the orientation of the boundary. The returning echo pulse arrives

at the transducer and - considering the velocity of sound known and fixed - the

position of structures can be displayed [32].

Ultrasound imaging has seen continuous development and growth over several

decades. Since its introduction in the 1960s, ultrasound has found widespread ap-

plication in anatomical-like imaging, blood-flow measurement, and evaluation of

physiology in almost all aspects of medicine [33]. Ultrasound imaging technique

has replaced or complemented a large number of radiographic and nuclear medicine

procedures and has opened new areas of diagnostic investigation. As ultrasound

instruments have become smaller, less expensive, and easier to use, diagnostic ultra-

sound has become increasingly popular among a wide variety of physicians (Table

2.1 lists many applications) [34].
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Table 2.1: Examples of common uses of diagnostic ultrasound grouped by specialty.
Specialty Applications

Radiology

Abdominal organs, peritoneum and retroperitoneum
All paediatric applications
Breast
Chest and mediastinum
Female pelvis
Heart
Interventional procedures (biopsy, aspiration, etc.)
Intraoperative applications
Neck, thyroid and parathyroid
Obstetric examinations
Peripheral arteries and veins
Scrotal contents
Soft tissues, bone, muscles, tendons and joints
Visceral arteries and veins

Cardiology
Heart
Large Vessels

Obstetrics
Fetus
Placenta
Uterus

Gynaecology
Adnexa
Ovaries
Uterus

Neurology and
neurosurgery

Brain
Extracranial arteries
Intracranial arteries

Gastroenterology

Biliary system
Gastrointestinal tract
Liver
Pancreas
Spleen

Urology

Adrenals
Kidneys
Prostate
Scrotal contents
Seminal vesicles
Ureters
Urinary bladder
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2.2.1 Breast Ultrasound

In the midst of all ultrasound imaging possibilities, breast ultrasound emerges as an

important adjunct to mammography and clinical examination in the further assess-

ment of both palpable and impalpable breast abnormalities. Recent technological

advances have stimulated a resurgence of interest in the use of ultrasound as a

primary screening tool, particularly in younger women in whom the theoretical ra-

diation risks of mammography are most pertinent[35] or women with dense breast

tissue as the sensitivity of mammography is low (35% - 48%) in these cases [36].

The technique used for screening must have high sensitivity for small breast, high

specificity and be cost-effective, safe and acceptable by the patients. BUS satisfies

all these criteria, however it is also an imperfect test, associated to a lower speci-

ficity when compared to mammography and typically requires a highly experienced

operator to perform the handheld exam[37].

A common use of BUS is to distinguish if the abnormality is solid (such as a

benign fibroadenoma or cancer) or fluid-filled (such as a benign cyst). However,

ultrasound can also assist in differentiating among different solid masses. Various

sonographic features, including a lesion margin, its shape, and its internal echo

texture are evaluated[38]. Malignant tumours often infiltrate the surrounding tissue,

resulting on poorly defined margins on ultrasound images, irregular and sometimes

spiculated boundaries, microlobulations, hypoechogenicity, and shadowing. Benign

masses, however, often have well-defined and circumscribed boundaries, and round

or oval shapes with gentle bi- or trilobulations[39]. The distinction (which can be

observed in Figure 2.7[40]) helps reduce the number of unnecessary biopsies, which

are invasive, time-consuming and resource-expensive. However, the interpretation

of images is subjected to the experience of a radiologist or physician.

Figure 2.7: Contour established for a malign tumour (left) and a benign one (right).

Use of a second radiology reader in breast cancer screening can increase the
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number of cancers detected [41], however it may be impractical due to necessity of

manpower. In order to provide a cost-effective second reading of breast screening

images, Computer-Aided Diagnosis (CADx) tools were developed.

2.3 Computer-Aided Diagnosis

The idea of Computer-Aided Diagnosis tool for breast sonography is to convert

the visually extractable sonographic features into mathematical models and to

characterize the lesions with the mathematical features based on the classification

schemes[42]. Generally, ultrasound CADx systems for breast cancer involve four

stages, as shown in the Figure 2.8 [43].

Figure 2.8: CADx system for breast cancer detection and classification.

(i)Image preprocessing:

Aims to improve the original BUS image. The image preprocessing step is usu-

ally performed with contrast enhancement followed by speckle reduction. Some en-

hancement techniques used are histogram equalization[44], contrast limited adaptive

histogram equalization[45], sticks technique[46], fuzzy logic-based[47, 48], sigmoidal

based adaptive contrast enhancement[49]. However, some systems do not consider

contrast enhancement[50].

For speckle reduction the methods are subdivided in filtering[51], wavelets[52]

or compounding approaches[53]. Although the former is simple and fast, it’s also

dependent on filter window. Working in the wavelet domain is easier for identify

and properly remove noise, however it increases the operation time. Compounding

approaches are simple but require hardware support[43].

Some techniques, such as nonlinear diffusion[54] enhance the image and remove

speckle at the same time. It is an adaptive filter that not only preserves edges

but also enhances them by inhibiting diffusion across edges and allowing diffusion

on either side of the edges. Figure 2.9[55] shows an example of the importance of

preprocessing stage on subsequent operations.
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Figure 2.9: Influence of speckle reduction and edge enhancement on later edge map.
Image (a) shows the BUS image and in image (b) the image was preprocessed with
hierarchical fuzzy c-mean clustering. Image (c) and (d) show, respectively, the edge
maps obtained from images (a) and (b), after a canny edge detection.

(ii)Image segmentation:

Divides the image into non-overlapping regions, and it will separate the objects

from the background. The regions of interest (ROIs) will be allocated for feature

extraction. Automatic segmentation can save much of the time required to sketch

a precise contour with very high stability[56]. The goal is to locate the suspicious

areas to assist radiologists in diagnoses[43]. Image segmentation is a critical and

essential component and is one of the most difficult tasks in image processing and

pattern recognition, and is crucial to the quality of the final analysis.

Common techniques for these tasks are histogram thresholding method[50], ac-

tive contour model[57], Markov random field[58] and neural networks[59, 60]. Neural

network based approaches are of increasing popularity within image segmentation,

the main advantage is that it extracts the contour of the tumour automatically.

However, it depends highly on the training of the network. Figure 2.10 [60] exem-

plifies segmentation and reinforce the influence of preprocessing in the same manner

as Figure 2.9.

(iii)Feature extraction and selection:

This step is to find a feature set of breast cancer lesions that must allow the next

step to accurately distinguish lesion/non-lesion or benign/malignant. The feature

space could be very large and complex, so extracting and selecting the most effective
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Figure 2.10: Example of segmentation using Pulse-Coupled Neural Network of a low
contrast image with preprocessing (c to d) and without (a to b).

features is very important. Many authors have studied morphometric and texture

features selection[61–65]. The techniques used for feature extraction are highly

dependent of the previous stages.

(iv)Classification:

Based on the selected features, the suspicious regions will be classified as

lesion/non-lesion or benign/malignant by various classification methods. The

commonly used classifiers are linear discriminant analysis[66], neural networks[67],

decision tree[68], support vector machine[69], template matching[70], and so forth.

CADx is a diagnostic aid that takes into account equally the role of the physician

and the benefits of computer systems. A BUS CADx system can be an efficient

computerized model and can avoid interobserver variation. [56].

Computer analysis of ultrasound images of breast lesions has been shown to

improve the diagnostic accuracy of radiologists in the task of distinguishing between

malignant and benign breast lesions and in recommending cases for biopsy [71–74].
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2.4 Semantic Segmentation and Deep Learning

Automation of segmentation could greatly improve a CADx system if a high accu-

racy is achieved. As mentioned in the previous sections, the feature extraction step

depends on morphometric and texture characteristics of the lesion, such as contour

shape and spiculations. Thus, a correct diagnostics is more accessible with greater

quality segmentation.

Many techniques have been developed for BUS segmentation. They are cate-

gorized into histogram thresholding, region growing, model-based (active contour,

level set, Markov random field), machine learning, and watershed methods. All these

approaches are displayed in Table 2.2 with short descriptions, main advantages and

limitations (adapted from [75]).

The segmentation task can also be separated in semantic segmentation and in-

stance segmentation. Semantic segmentation does not distinguish between elements

of the same class. Instance segmentation, however, will segment and paint different

objects of the same class with different colours because essentially they are different

instances[12]. A comparison between both cases is presented in Figure 2.11[76]. In

this work, as we are using regions of interest previously selected with a single breast

tumour, we use semantic segmentation.

Figure 2.11: Semantic segmentation (left) and instance segmentation(right).

Semantic segmentation is currently one of the most studied topics in computer

vision, with applications in medical diagnostic imaging, factory automation, remote

sensing, forensics, autonomous vehicle and robot guidance[77]. The idea of this pro-

cess is to recognize an image on pixel level, assigning each element to a corresponding

class. This could give an explicit and meaningful description of objects within an

image. The main advantages are that it is quick, consistent and automated, reducing

human involvement.

Semantic segmentation algorithms are often formulated based on neural net-

works, encouraged by the success in classification problems. In recent years, deep

learning approaches have outperformed the state of the art in segmentation tasks[78].

Deep-learning methods are representation-learning methods with multiple levels

of representation, obtained by composing simple but non-linear modules in which
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Table 2.2: Comparison between different approaches for segmentation of BUS im-
ages.

Methods Descriptions Advantages Disadvantages
Histogram
thresholding

Threshold value is se-
lected to segment the
image.

Simple and fast. Only works for
bimodal his-
tograms and has
no good results
for BUS images.

Region growing Region is grown from
the seed point by
adding similar neigh-
bouring pixels.

The concept is
simple. Multiple
stop criteria can
be chosen.

Seed point is re-
quired; sensitive
to noise.

Model-based
(includes active
contour, level
set, Markov
random fields)

A model is used to for-
mulate the lesion con-
tour and the model is
revised based on lo-
cal features such as
edges, intensity gradi-
ent, texture and so on.

Robust, self-
adapting in
search of a
minimal energy
state.

Time-
consuming;
prelabeled ROI
or initial contour
is required; easy
to get stuck in
local minima
states.

Machine learn-
ing

Features to sepa-
rate the lesion from
the background are
extracted first, and
a machine learning
method is trained to
do the classification
based on pixel-level or
region-level.

Stable; different
lesion charac-
teristics can
be incorpo-
rated by feature
extraction.

Long training
time; over-
training prob-
lem; test images
should come
from the same
platform as the
training images.

Watershed (in-
cludes marker-
controlled
watershed and
cell-competition
watershed)

Considers image as
topographic surface
wherein grey level of
a pixel is interpreted
as its altitude. Water
flows along a path to
finally reach a local
minimum.

It ensures closed
region bound-
aries.

Over-
segmentation
problem.
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each module transforms the representation at one level (starting with the raw input)

into a representation at a higher, slightly more abstract level. An image comes in

the form of an array of pixel values, and the learned features in the first layer of

representation typically represent the presence or absence of edges at particular

orientations and locations in the image. The second layer typically detects motifs

by spotting particular arrangements of edges, regardless of small variations in the

edge positions. The third layer may assemble motifs into larger combinations that

correspond to parts of familiar objects, and subsequent layers would detect objects

as combinations of these parts[79].

The key aspect of deep learning is that these layers of features are not designed by

human engineers: they are learned from data using a general-purpose learning pro-

cedure. Also, deep learning performs better than other machine learning algorithms

when you have a large amount of data and/or that data are unstructured[79, 80].

2.4.1 Convolutional Neural Networks

Among the current deep learning techniques, the Convolutional Neural Networks

(CNN’s) are designed to process data that come in the form of multiple arrays, such

as: 1D for signals and sequences, including language; 2D for images or audio spectro-

grams; and 3D for video or volumetric images[79]. Following the development and

presentation of Krizhevsky’s CNN for image classification (known as AlexNet)[81],

researcher’s interest on this technique has grown exponentially. Since then, larger

and deeper networks have been proposed. Some common deep network architectures

such as VGG[82], GoogLeNet[83] and ResNet[84] were used as building blocks for

subsequent segmentation architectures developed.

Ronneberger, Fischer and Brox developed the U-Net[78], a CNN for biomedical

applications. The architecture consists of a contracting path to capture context and

a symmetric expanding path that enables precise localization. The U-Net is fast

and achieves very good performance on different biomedical segmentation tasks.

Badrinarayanan, Kendall and Cipolla presented a novel CNN architecture based

on the layout of the VGG-16 network, adapted to pixel-wise segmentation, named

SegNet[85]. It has its structure similar to the U-Net, with contracting and expanding

paths, but uses less memory. Using U-Net, Xie et al.

The basic design of a CNN consists of an arrangement of multiple layers per-

forming operations in their inputs and forwarding the outputs to the next layer.

In cases of semantic segmentation, the layers usually are: convolution, activation

unit, down- and up-sampling. Also, batch normalization and dropout are optional

but highly used operations. These layers are organized and repeated in different

quantities depending on the intended architecture.
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Parameters of convolution layer consist of a set of filters, known as kernels, to

detect which features are present throughout an image. A filter is just a matrix

of values, called weights, which are trained to detect specific features. The kernel

moves over each part of the input and the convolution operation between the filter

and that part of the image is computed. Higher values mean the feature is detected.

Figure 2.12[86] shows the convolution operation on a part of the image containing

the same curve that the filter is looking for, obtaining a large number as result. Each

convolutional layer has an entire set of filters and each of them produce a separate

activation map. These activation maps are stacked along the depth dimension and

produce the output volume.

Figure 2.12: Example of convolution operation between a segment of an image and
the filter checking for right-hand curve.

The output of the convolution operation between the filter and the input image

is summed with a bias term and passed through a non-linear activation function.

This occurs in order to introduce non-linearity to the work, as convolution is a

linear operation and the input data is non-linear. The activation layer will apply an

element-wise activation function, leaving the size of the volume unchanged.

Following convolution and activation comes the downsampling operation. The

goal is to reduce dimensionality and to allow assumptions to be made about features

contained in the sub-regions. The pooling function applies a window function to the

input patch, and computes the maximum value in the neighborhood, the result is a

feature map of lower resolution. Figure 2.13 [87] displays a scheme for downsampling

and max pooling. This shrinkage of spatial size reduces the amount of parameters

and computational time in the network.

The upsampling of the feature map is performed by an “up-convolution”, also

called transposed convolution, increasing the resolution of the features before the

last layer (with connections to all activations in the previous layer) outputs a seg-

mentation map.
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Figure 2.13: Downsample by a pooling layer (top) and example of max pool (bot-
tom).

Dropout is a technique for improving neural networks by reducing overfitting.

The key idea is to randomly drop units (“turn off” the neuron) from the neural

network during training, preventing units from co-adapting too much[88]. By re-

moving some neurons, our network becomes simpler, with less parameters, and the

preserved neurons become much more specialized in the task, once they can not rely

on a neighbour neuron[12].

To increase the stability of a neural network, batch normalization adapts the

output of a previous activation layer by subtracting the batch mean and dividing by

the batch standard deviation. It was developed in order to accelerate the training

of deep networks, by adjusting and scaling the activations[89]. Similar to dropout,

it can be interpreted as a way of regularizing a neural network by adding noise to

its hidden units. In certain cases, the use of batch normalization makes dropout

unnecessary (or at least redundant).
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2.5 Related Works

As of late, deep learning has turned into a predominant research technique in vari-

ous fields, and several segmentation approaches dependent on convolutional neural

networks have been acquainted with medical imaging. Many authors consider U-

Net, FCN-AlexNet and Mask R-CNN the state of the art architectures in image

segmentation. However, there are not so many papers on breast ultrasound.

Xie et al.[13] conducted the image segmentation by modifying some structures

of the aforementioned methods to adapt to their dataset of breast lesions on ul-

trasonography. They achieved a dice score of 0.692 using U-Net. Comparing with

the different architectures of the work, the U-Net performed better in cases with

irregular contours but had difficulty detecting small lesions or resolving in complex

background. The best results were obtained using a modified Mask-R CNN, with a

dice coefficient of 0.827.

Hu et al.[14] also studied the performance of different architectures of CNNs in

breast ultrasound image segmentation. There was a dice score of 0.645 between U-

Net and the ground truth labels, the lowest value of all techniques used. However it

presented a standard deviation of 26%, a high value meaning that it performed much

better in some cases than in others. Similar to the work mentioned before, the U-Net

was great in depicting irregular shapes but failed to detect small objects. The best

result (dice score = 0.890) was achieved by combining a dilated fully convolutional

network with a phase-based active contour model.

Almajalid et al.[15] developed a U-net-based segmentation framework for breast

tumors using BUS. With preprocessing, data augmentation, U-net training, and

postprocessing steps, the group obtained a dice coefficient of 0.825.

Zhuang et al.[16] proposed a method based on the conventional U-Net, but the

plain neural units are replaced with residual units to enhance the edge information.

This Residual-Dilated-Attention-Gate-UNet achieved a dice score of 0.847, while

the traditional U-Net scored 0.820. In addition, the SegNet was tested in the same

dataset and obtained a dice score of 0.817.

Negi et al.[17] continued the work of Zhuang et al., proposing a Generative

Adversarial Network model (GAN) using the RDAU-Net as the generator module,

achieving a dice score of 0.884. Han et al.[18] also used a GAN for BUS lesion seg-

mentation. In their work, they obtained a dice score of 0.871 using this architecture,

while the U-Net scored 0.808.

Ghosh et al.[19] proposed a technique using U-Net and ResNet in parallel. Six

convolutional blocks are coupled at the beginning as a feature extractor of the image

and this set of features is fed into a combination of both architectures. This work

achieved a dice score of 0.937 using the mentioned configuration, while the U-Net
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obtained a dice of 0.765.

Another work in BUS segmentation that allows a comparison between U-Net

and SegNet was done by Singh et al.[20]. In that work, the U-Net performed way

better than the SegNet. These networks obtained dice coefficients of 0.883 and

0.504, respectively. The proposed network – a conditional generative adversarial

network with an atrous convolution layer and a channel-wise weighting block model

– outperforms the FCN, SegNet, UNet and other segmentation models in terms of

Dice, achieving the top score of 0.938.

Other researches on Breast Ultrasound lesions segmentation using different tech-

niques were presented in the last years. Flores and Pereira[49], from our own

group, proposed a segmentation procedure using contrast enhancement and wa-

tershed transformation, acquiring a dice score of 0.895. Xian et al.[90] compared

five different segmentation techniques using a dataset of 562 images. In the five

approaches, two of them are graph-based approaches, one is ANN based approach,

one is a level set-based segmentation approach, and one is based on cell competition.

This last mentioned method is semi-automatic, and yielded their best result, with

0.880 Dice. Kriti et al.[91] proposed a non-linear iterative filter followed by active

contour to segment lesions on BUS images. They obtained a dice coefficient of 0.886.

In spite of the progress, this is still an open research topic, due to challenges

related to the inherent presence of noise and low contrast of images, sensitivity of

current methods to the used image-acquisition method, equipment, and settings,

and the lack of large open datasets of annotated images for training purposes[92].

Next section contains more detailed explanations about the techniques proposed

for this work, as well as information about the BUS image database, hardware and

software to be used for the project.
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Chapter 3

Materials and Methods

3.1 Image Dataset

The BUS dataset consists of 2054 images from 659 female patients of ages from

16 to 89 years, with an average of 47 years. The images were acquired during

routine breast diagnostic procedures at the National Cancer Institute (INCa) of Rio

de Janeiro, Brazil. The INCa Research Ethics Committee has approved this study

(protocol 38/2001) with prior consenting of the analyzed patients. All the cases were

histopathologically proven by biopsy, where 1351 (65.8%) images presented benign

lesions and 703 (34.2%) images had malignant tumours.

The image dataset was acquired using three kinds of ultrasound machines with

linear array transducers: Logiq 5 (General Electric, Milwaukee, Wisconsin, USA) at

12 MHz, Logiq 7 (General Electric, Milwaukee, Wisconsin, USA) at 10 MHz, and

Sonoline Sienna (Siemens, Erlangen, Baviera, Germany) at 7.5 MHz. As the beam

resolution is about 0.5 mm and the pixel size is 0.33 mm/pixel, the image resolution

is nearly 1.5 pixels. Also, the images were captured directly from the 8-bit video

signal (i.e., 256 grey levels) and saved in TIFF format.

Every single one of the lesions had its contour manually delineated by a senior

radiologist with nearly 15 years of experience in breast ultrasound interpretation.

Those labels are considered the gold standard in the present work when analyzing

the networks performances. An example of the image-label pair is presented on

figure 3.1.

The data was randomly split between training, validation and test sets, divided

in 70%, 10% and 20%, respectively. The sets are normalized with the mean (µ) and

standard deviation (σ) values from all images in the training set. It is worth noting

that we should use only the mean and standard deviation from the training data and

apply the equations 3.1, 3.2 and 3.3 on all separate datasets. The reason is that, by

machine learning principles, the test set should be reasonably representative of the
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Figure 3.1: Original image from our dataset along a manually labeled lesion.

training set, consequently, we have to assume that the mean and standard deviation

are the same.

Xtrain =
Xtrain − µtrain

σtrain
(3.1)

Xvalidation =
Xvalidation − µtrain

σtrain
(3.2)

Xtest =
Xtest − µtrain

σtrain
(3.3)

A small dataset - such as ours - relies heavily on data augmentation to artificially

generate more data. In this work, we use two affine transformations to augment our

data: translations and rotations. The operations we apply to the original images do

not change the image structure. The data augmentation process is performed only

on the training set, enabling a more robust and generalized model of the network.

There is no procedure on the validation and test sets, as they have to represent

unseen data to the model. Table 3.1 show a summary of the data augmentation

method.

Table 3.1: Data augmentation table.
All
Data

Training
Data

Translations Rotations Augmentation
Factor

Augmented
Training Data

2054 1437 [(-1,-1),(-1,0),
(0,-1),(0,0)]

[-1,0] 8 11496

Starting with the original set of 2054 images and labels, we use random 1437

images pairs as training images. For each image, we apply a translation pair (x, y)

on each pixels, and apply a rotation angle a, in degrees. As we have four translation

23



pairs and two angles, we are augmenting the total training set size in a factor of 8,

generating 10059 new images, resulting in a final training set of size 11496.

As the training is supervised, we show the labels to the network during the

training in order to minimize the loss. Unlike test data, validation data is used to

tune the hyper parameters. After the test stage, we compare the segmentation map

of the network with the manual label to analyze the similarity between the output

and the gold standard.

3.2 Hardware and Software

The testing platform considers a LINUX-based computer (64-bit Ubuntu release

16.04.6 LTS) with an Intel Core i7-7740X CPU @ 4.30GHz (Intel, Santa Clara,

California, USA), 32 GB of RAM and a GeForce GTX 1080 Ti with 33 MHz clock

speed (Nvidia, Santa Clara, California, USA). The Nvidia driver version was 390.59.

Programming language is Python 3.6.8 with TensorFlow and Keras libraries for deep

learning.

3.3 Convolutional Neural Networks

3.3.1 Functions and Parameters

Before explaining the layout of the tested networks, it is important to clarify some of

the operations and functions utilized in the present work. An introductory explana-

tion was given in section 2.4.1, and in this section we will delve into some specifics.

First of all, the convolution operation must come with the choice of the filter size,

stride and padding.

The filter, also known as kernel, is usually a N-by-N matrix, such as 3× 3, 5× 5,

and so on. The stride controls how the filter convolves around the input volume.

For example, the stride being set as (3,3) has the effect of moving the filter three

pixels right for each horizontal movement of the filter and three pixels down for

each vertical movement of the filter when creating the feature map. Lastly, padding

defines how the filter deals with the borders of the input. Zero padding adds zero

values around the figure, as the pixels on the edge of the input originally would only

be exposed to the edge of the filter. By adding a border with zero value, the filter

starts outside the frame of the image, giving the pixels on the border of the image

more of an opportunity for interacting with the filter. The output’s size depends on

this three choices, following the formula in equation 3.4

O =
I −K + 2P

S
+ 1 (3.4)
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Where O is the output dimension (height or length), I is the input dimension

(height or length), K is the filter size, P is the padding, and S is the stride. An

unpadded convolution will crop away some of the borders if the filter size is larger

than 1.

A neural network without an activation function would simply work as a linear

regression model, having limited power and not performing well on complex tasks.

Acknowledging this, the activation function is used to convert a input signal of a

node to an output signal, introducing a non-linearity to the model. We used three

different activation functions in the present work.

First, the rectified linear unit (ReLU) is the most popular function in deep

learning nowadays. It is a very simple and efficient unit, being easy to compute

and fast to converge. f(z) is zero when z is less than zero and f(z) is equal to z

when z is above or equal to zero. The downside for being zero for all negative values

is the “dying ReLU”, the problem when ReLU neurons become inactive and only

output 0 for any input[93]. Lower learning rates often mitigates the problem. If not,

other function must be used. Parametric ReLU (PReLU) is a variation of ReLU

that, instead of rectifing values below zero, it uses a slope with inclination A as a

parameter for the neural network to figure out itself: f(z) is equal to Az when z

< 0. Xu et al. [94] compared multiple activation units - including PReLU - and

obtained superior results to those with the original ReLU, using datasets with over

25 thousand images. The graphs for each function are presented in figure 3.2.

Figure 3.2: Graphs of activation functions. Left: ReLU. Right: PReLU.

The ReLU layers are meant to be used only within hidden layers of the network.

In the output layer we use the third activation function of this work, the sigmoid.

This function is used for binary classification, being responsible for the final oper-

ation of the network, i. e. outputting the segmentation map. It will take any real
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number and return the output value in the range of 0 to 1, according to the equation

3.5.

f(z) =
1

1 + e(−z)
(3.5)

The downsampling is performed by the pooling layer. The most common method

for that is the max pooling, used as an example previously (figure 2.13), in such a

way that the maximum feature response within a given sample size is retained. The

decrease in dimension is dependant on the filter size and stride used. On the other

hand, the upsampling is literally a sample rate conversion opposed to downsampling.

It is commonly performed by a transposed convolution or creating a bigger matrix

with artificial data. The upsampling step increases the dimension of the input by

the factor set in filter size and stride.

Two very important functions in the convolutional neural networks are the loss

function and optimizer. The main objective of deep learning is to reduce the differ-

ence between the predicted output and the actual output. This is called the loss, and

the goal is to minimize the function by finding the optimized value for the weights.

The loss is summed up over all the pixels in a mini-batch and the optimizers update

the weight parameters to minimize the loss function. The amount that the weights

are updated during training is referred to as the step size, or the “learning rate”.

In the original U-net and Segnet papers, the authors use a weighted cross-entropy

[78, 85] as the loss function. However, when the level of pixel imbalance increases,

Dice has better results than cross-entropy [95]. We tested both functions in the

present work and compared their results in both networks. Also, in this work we used

the adam optimizer. Adam is computationally efficient and requires less memory,

and its characteristics makes it the most popular gradient descent optimization

algorithms.

The last essential parameter to set when training the models is the dropout rate.

The optimal dropout rate is allegedly 50%. A lower probability would have minimal

effect and a extreme one should result in under-learning by the network.

3.3.2 Architectures

U-Net

Figure 3.3 [78] illustrates the architecture of the U-Net proposed originally. It is

easy to understand origin of the name.

The input image enters the left portion, called contraction path. It consists of

the repeated application of two 3 × 3 convolutions (unpadded convolutions), each

followed by a activation unit (ReLU or PReLU) and a 2 × 2 max pooling operation

26



Figure 3.3: U-net architecture. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations.

with stride 2 for downsampling. As the convolutions are unpadded, the border are

cropped. In the first layer, for example, the size of the input changed from 572×572

to 570 × 570.

Each convolutional layer has an entire set of filters (the number of channels is

denoted on top of the boxes in figure 3.3) and each of them produce a separate

2-dimensional activation map. These activation maps are stacked along the depth

dimension and produce the output volume. The max pool operation with size 2 ×
2 and stride 2 means the window do not overlap regions and the output will be

downsampled by a factor of 2.

In the expansive path (right portion of the U-net) the steps are similar. It

consists of an upsampling of the feature map, a concatenation with the matching

feature map of the left path and two 3 × 3 convolutions followed by the activation.

The merger with the map from the contraction map is the uniqueness of the U-Net,

other networks handle it differently. The purpose of this expanding path is to enable

precise localization combined with contextual information from the contracting path.

This helps to predict a good segmentation map. The last layer produces an output

where we have the segmentation result after a 1 × 1 convolution, with the desired

number of classes from the 64-component feature map.
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SegNet

The overall architecture of the SegNet is similar to the U-Net, as can be seen in

figure 3.4. The encoder part corresponds to the first thirteen convolutional layers in

the VGG-16 network[82].

Figure 3.4: SegNet architecture. Encoding branch based on VGG-16 and decoder
branch uses the pooling indices from de encoder.

The number of convolutions is different from the U-Net. There are two convolu-

tions followed by batch normalization and activation before the pooling operation in

the first two steps, and three consecutive convolutions in the following three steps.

The decoder segment is mirrored in relation to the encoder, the only differences

are the obvious upsampling as opposed to downsampling and the last convolution

being a 1 × 1 for a pixel-wise classification. In the original work, the last activation

function was the softmax, while we use sigmoid.

The major innovation of SegNet is the reuse of the pooling indices. The decoder

upsamples its input feature maps using the memorized max-pooling indices from

the corresponding encoder feature maps, instead of transferring the entire map like

U-Net does. This effectively uses less memory from the system.

3.3.3 Training, Validating and Testing

In both networks the procedure is the same. We trained each network many times,

using different parameters and functions when building the models. Essentially,

the parameters we changed were batch size (16, 32 and 64), dropout rate (0.33

and 0.5), kernel size (3,3; 5,5 and 7,7) and learning rate (10−5 and 10−6), and the

functions were altered between ReLu and PReLU for activation and between dice

and crossentropy for loss. Also, in U-Net we used a thousand epochs, while in

SegNet we used two thousand. This was done because the SegNet was much slower

to stabilize.
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When training the network, we input 11496 images for training and 205 images

for validation. While the model tries to fit the training data, the validation set is

working to fine-tune the parameters. Only the model with the highest validation

score is saved. In each training epoch, the training data is shuffled to disregard any

bias in the presentation order. After that, we evaluate the model with the test set

of 412 images.

During the testing of the model, every result image needs to be compared with

the ground truth. This comparison is achieved using dice score, or dice similarity

coefficient(DSC). This index accounts for the true positives(TP), false positives(FP)

and false negatives(FN) between the manually labeled images and the output of the

network.

DSC =
2TP

2TP + FP + FN
(3.6)

Next chapter contains the description of our tests results and discussion.
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Chapter 4

Results and Discussion

In this chapter we will reveal and discuss our tests results. Each test tries to achieve

a model that performs better on the test set than the previous one. We tried

changing some parameters as mentioned in section 3.3.3 until we obtained the best

configuration for each network. Then, we compared the results of using different

functions for loss and activation.

4.1 U-Net

The configuration that yields the best results in the U-Net models is presented on

the table 4.1.

Table 4.1: Best parameters when compiling the U-Net models
Dropout Rate Batch Size Filter Size Learning Rate

0.5 32 (3,3) 10−5

With four possible configurations when we change the activation and the loss

functions, table 4.2 resumes all four results.

Table 4.2: U-Net tests final results. The fourth column shows average dice score in
the training set with standard deviation. The fifty column shows training time in
hours.

# Activation Unit Loss Function Dice Score Training Time (h)
Test 1 ReLU Dice 0.863 ± 0.141 33.06
Test 2 ReLU Cross Entropy 0.855 ± 0.148 33.06
Test 3 PReLU Dice 0.859 ± 0.133 45.83
Test 4 PReLU Cross Entropy 0.851 ± 0.143 45.83

All results are similar, however some observations can be made. Most noteworthy

is the time to train. While every configuration is capable of outputting 412 labels in
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less than one second, the training time increases in almost 40% with PReLU acti-

vation units. No distinguishable alteration in training time occurs when comparing

the loss functions.

Analyzing the dice scores of the tests, we can conclude that the biggest difference

between all results is as low as 1.2%. Using a Student’s t-test, the p-value between

tests is lower than 5% when comparing tests 1 and 2 (p-value = 0.02) and tests 3 and

4 (p-value = 0.01). Using PReLU as opposed to ReLU does not alter the quality

of the segmentation output. Meanwhile, the gap between dice and cross entropy

is higher. The models with dice function segment most of the lesions in a slightly

better manner than the others. Combining this with the lower training time using

ReLU, the Test 1 configuration can be considered the best in the present work.

Among the 412 images on the test set, 71.1% (293) of those had dice scores above

average, while 9.5% (39) were outliers, with worse labels, during Test 1. This can

be seen in figure 4.1, with the dice scores for each image.

Figure 4.1: Dice coefficient for each image of the test set during Test 1. Model
trained with ReLU as activation unit and Dice as loss function.
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The vast majority of the worst segmentation results happened in images with

lower contrast between the lesion and the background and/or in images with multiple

dark areas. We took all the outliers of Test 1 and applied a alternative segmentation

procedure. Using the BUSAT (Breast Ultrasound Image Analysis Toolbox)[96], the

autosegment function of this toolbox computes the automatic lesion segmentation

using log-Gabor filtering and texture analysis. Figure 4.2 shows an example of our

segmentation and the automatic segmentation from the toolbox, and it is presented

to demonstrate that those outliers were in fact complexes structures.

Figure 4.2: Different segmentation labels for one image of the test set. Top left:
Original image; Top Right: Manually segmented; Lower Left: Test 1 output; Lower
Right: BUSAT autosegment output.
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4.2 SegNet

Following the previous section, the SegNet results will be presented in the same

manner. The best parameters configuration is on table 4.3.

Table 4.3: Best parameters when compiling the SegNet models
Dropout Rate Batch Size Filter Size Learning Rate

0.5 32 (5,5) 10−6

Matching the U-Net parameters, the dropout rate and batch size were the same.

However, the best results were scored with a larger filter size and slower learning

rate. Besides, it is necessary to mention that the number of epochs for SegNet was

2000 (twice the amount used on U-Net), because in just 1000 epochs the network

was not stable yet. Table 4.4 displays the results of differing functions.

Table 4.4: SegNet tests final results. The fourth column shows average dice score in
the training set with standard deviation. The fifty column shows training time in
hours.

# Activation Unit Loss Function Dice Score Training Time (h)
Test 5 ReLU Dice 0.811 ± 0.154 104.45
Test 6 ReLU Cross Entropy 0.790 ± 0.157 104.45
Test 7 PReLU Dice 0.811 ± 0.150 127.78
Test 8 PReLU Cross Entropy 0.790 ± 0.164 127.78

The conclusions to be made about the SegNet tests are similar to U-Net. Training

time increased drastically when using PReLU instead of ReLU and no difference

occurs when changing the loss function. Also, dice scores are very similar, the

biggest gap being 2.1%. The Student’s t-test in these configurations presents a p-

value lower than 5% when comparing tests 5 and 6 (p-value = 0.002) and tests 7 and

8 (p-value = 0.0001). In this architecture, using different activation units made no

impact on the dice coefficient. Once again, the dice loss function outperformed the

cross entropy. Considering the slightly better or equal segmentation and the lower

training time, using ReLU and dice is again the best configuration.

In Test 5, 68.2% (281) of the output labels had dice scores above average, while

7.3% (30) were outliers. The dice score for each image can be observed in figure 4.3.

Setting side by side the results of the two architectures, we can elaborate a little

more. First of all, the U-Net was better than SegNet for our dataset in all aspects.

U-Net was faster to train and achieved better quantitative results. Boxplots for each

configuration tested in the present work are presented in figure 4.4.

While the copying of feature maps from encoder to decoder was supposed to

slow the training, we were able to use a higher learning rate. When using 10−5

the SegNet behaved poorly. This was amended by using a slower learning rate
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Figure 4.3: Dice coefficient for each image of the test set during Test 5. Model
trained with ReLU as activation unit and Dice as loss function.

and higher number of epochs, but the training became extensively time demanding.

Examples of the results obtained using U-Net’s Test 1 are presented in figure 4.5.

Comparing with related works shown in Section 2.5, our work achieved dice

scores on pair with the best works using U-Net and SegNet in this task. Most

of the works mentioned achieved dice scores lower than ours when using the same

architectures, with Zhuang et al. [16] achieving the highest SegNet score observed,

81.7% and Singh et al. [20] achieving 88.3% using U-Net.

When comparing with different techniques, the U-Net could not achieve the

top results in BUS lesion segmentation. Recently, GANs [17, 18, 20] have been

successfully applied to semantic segmentation, achieving dice scores higher than

ours in the same task. Active contour algorithms are still able to obtain high dice

scores [14, 91]. These techniques are more complex and/or slower than using U-Net,

however the gain in segmentation quality is noteworthy.
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Figure 4.4: Boxplot of dice scores for each configuration in present work. Horizontal
axis: dice scores. Vertical axis: test number.
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Figure 4.5: Eight examples of our results using U-Net’s best configuration. In the
first column are the original images, the second column shows the ground truth and
the third column is the Test 1 output.
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Chapter 5

Conclusion

We successfully implemented two convolutional neural networks for segmentation of

breast ultrasound images lesions, with obtained accuracy on pair with most present-

day works in similar tasks. Therefore, we can conclude that these two networks

are able to segment ultrasound images with useful accuracy depending on their

configuration. Also, comparing with different techniques, the CNNs were able to

produce label outputs in a very low time.

Dice loss consistently outperformed the cross-entropy function used in the orig-

inal configurations of both networks. It was expected because of the imbalance

between classes in the images. Meanwhile, using parametric ReLU did not improve

the results compared with the original ReLU, and the training became slower.

With the proposed architectures, we determined that the U-Net works better

than the SegNet in the segmentation of our dataset. The SegNet is slower to train

and achieved a lower dice score. Though U-Net is a widely used model in medical

image segmentation, it has not achieved the top scores in BUS tumour segmenta-

tion. This is mainly due to the characteristics of ultrasound images. To achieve a

even more accurate segmentation, the model would require more powerful feature

extraction.

In spite of the progress in the last few years, this field of research is still open for

future contributions. The inherent presence of noise, low contrast, sensitivity of the

image-acquisition methods, and the lack of large datasets of lesions with associated

labels poses as challenges in the current automatic segmentation procedure.

On a side note, we assembled two pre-processed datasets based on the original

and trained the U-Net with them. The first one was denoised, while the second

one was denoised and had its contrast enhanced. In both cases, the segmentation

accuracy of the U-Net models did not improve in comparison with the model trained

with the original dataset. This may indicate that the U-Net is learning the features

on the images independently of the presence of noise or worse contrast. However, the

pre-processing was done automatically and we did not had enough time to perform
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substantial testing. This can be carried out in future works.

Other possibilities for future works are:

- perform a more creative data augmentation. We could use zoom, brightness

changes, deformations, among other techniques. This would provide a more robust

training of the network.

- using different functions. PReLU did not improve the results over ReLU, but

it is possible that leaky ReLU or random ReLU present better scores. Also, using

a loss function that considers more weight to pixels near the border of the lesion

could help to maintain contour information.

- combine the U-Net with other techniques. Using the segmentation output of

the U-Net as initialization of an active contour algorithm or using the U-Net as a

generator module in a GAN are possibilities already observed in similar works.
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